# New Math Course has Far-Reaching Uses

## Graph Theory, Marygrove’s latest mathematics course.

Learning mathematics often conjures coursework in algebra, calculus, and other such studies taught eons ago. Graph Theory, Marygrove’s latest mathematics course, will diverge from this pattern to offer a new manner of math. Though it’s only an infant to the other mathematical disciplines, it has a lot to offer for all kinds of students.

Graph theory is part of the discrete mathematics branch, which focuses on the study of countable/discrete quantities (like integers), rather than continuous quantities (like the set of all real numbers). The focus is on relationships, designated as vertices connected by lines. The idea is to trace the patterns of connections, which follow cycles and disruptions.

One of the main draws of Graph Theory is its simplicity, which for Dr. Brian Crane, professor of the upcoming course, was his very reason for earning his doctorate in it. Crane’s research explores the theoretical aspect of the field, as opposed to its secular application.

I’m a pure mathematician,” he said. “I pursue random ideas as a puzzle to be solved.”

The winter semester course will introduce Graph Theory and eventually integrate Crane’s own research to get students pursuing their own mathematical endeavors.

Since Graph Theory is a relatively new study dating back to the 1700’s, its practical use has yet to be fully explored. Its real world application has uses in marketing, computer science, Sudoku puzzles, or even social networking. Take Facebook for example. Considering yourself and your beloved five-hundred-too-many-friends as vertices, you can map out the series of connections as a graph. In practical terms, this could provide a social study and selective advertising, among other things.

In fact, Graph Theory’s first known use came from its application to city mapping. Leonhard Euler was appointed to figure out if citizens of Königsberg, Prussia (now Kaliningrad, Russia) could get around the city without having to cross over the same bridge twice. Euler concluded that it couldn’t be done, using what has now become the Graph Theory system soon to be offered at a classroom near you.